起重機文章
Product Series
推薦產品
河南華東起重機械設備公司
服務熱線:400 086 9590
公司:河南華東起重機械設備有限公司
聯系人:賈經理
聯系電話:13903802779
地址:河南新鄉市封丘縣起重機工業園區
當前位置: 起重機 > 起重機文章
QY25K型汽車起重機伸縮吊臂的有限元分析
時間:2022-03-06來源:起重機廠家瀏覽次數:102
1伸縮吊臂的結構組成及分析方法
QY25K汽車起重機采用四節伸縮式箱形吊臂,如圖1所示。各節臂之間可以相對滑動,靠它們搭接的上下滑塊來傳遞作用力。基本臂1根部與轉臺通過水平銷軸鉸接,且其中部還與變幅液壓缸5鉸接,可實現吊臂在變幅平面內自由轉動。吊臂伸縮采用一級伸縮液壓缸、雙繩排滑輪機構(兩伸、兩縮)以實現二、三、四節吊臂同步伸縮。
吊臂截面形狀為兩塊成型鋼板對焊而成。其上半部為大圓角過渡形,下半部為外凸折板形,中部焊上槽形加強筋,見圖2。
吊臂的設計計算通常的方法是將吊臂結構視為梁模型進行強度及剛度等方面的分析。但實際上,吊臂是由薄板對焊起來的箱形結構,應該視為板殼模型。解決這樣一個變截面板殼模型受力問題,比較行之有效的方法是有限元法。故我們應用此法,并采用功能強大、技術上非常成熟的商用有限元軟件ANSYS為工具來進行分析。基于吊臂的實際工況較多,限于篇幅,本文僅以全伸臂工況為例(臂長L=32m,幅度R=6m,吊重6t),介紹QY25K汽車起重機伸縮吊臂結構有限元的分析過程。
2伸縮吊臂有限元模型建立
2.1實體建模
考慮到吊臂的重量,在解算時由ANSYS自動計算。為確保其重心位置的正確性,必須以吊臂的真實工況位置(仰角θ)進行建模,亦即先要計算仰角θ的大小,再激活工作平面(workplane),將工作平面旋轉θ角,在工作平面內造型。各節臂的筒體由薄板構成,取中面尺寸造型。基于基本臂的尾部及四節臂的頭部結構異常復雜且剛性很大,故將其簡化成實體,利用ANSYS強大的造型功能,如:拉伸、移動、拷貝、布爾加減運算、粘接等,可方便地建模。
2.2單元選取及網格劃分
板采用板殼元Shell63來離散。Shell63是一種4節點線彈性單元,它遵循基爾霍夫假定,即變形前垂直中面的法線變形后仍垂直于中面,而且這種單元可以同時考慮彎曲變形及中面內的膜力,比較符合吊臂的實際受載情況。實體單元選用8節點的6面體單元Solid45。
考慮到每節臂之間都有搭接部分,不易選中,且大部分板厚都不一樣,若是每塊板逐個進行網格劃分,效率低下,容易出錯,為此我們先在實體模型上指定屬性,即賦予所有實體需劃分的單元、材料特性、實常數等,然后由程序一次對所有板、塊進行網格劃分,同時也避免了在網格劃分操作中重復設置屬性。若是對某些網格形狀不滿意,則可對這部分重新進行劃分,因為重新劃分時,可刪除已有的網格,但不會刪除所指定的屬性。
各節臂筒體采用自由(free)及映射(mapped)方式劃分。滑塊處采用掃掠(sweep)劃分,以保證其形狀為六面體。整個網格劃分,控制單元形狀盡可能規則,避免形狀畸形。
最終形成吊臂的有限元模型規模:節點數52017個,單元數62827個,其中板單元42153個,實體單元20674個。網格如圖3所示。
2.3滑塊接觸處模型處理
由于吊臂工作時,各節臂之間靠與滑塊接觸和擠壓來傳遞力,有限元建模中,必須解決各節臂與滑塊間的連接問題。首先考慮用ANSYS中的接觸單元來分析,但由于該算例中,單元數頗多,模型規模大,且有12處接觸(四節臂上下有12個滑塊),而接觸問題屬于非線性,求解過程必須反復迭代計算,因而計算量實在太大,另外,其準確性也較差(實際結構中的接觸特性尚不清楚),基于此,我們運用另外一種方法——節點自由度耦合技術來模擬滑塊與各節臂的接觸。工作時,滑塊與吊臂保持接觸,但它們之間沿接觸面有相對滑動趨勢,故相對應的節點間沿接觸面的法向自由度必須耦合,而切向自由度則不能耦合,應當釋放。為了達到此目的,首先要旋轉節點坐標系,旋轉角度即為仰角θ,利用各節臂與滑塊在同一位置節點(CoincidentNode)間的耦合,可方便地實現12個滑塊與吊臂對應節點的耦合。
2.4加載及約束處理
吊臂所受的載荷有:吊重、側載、鋼絲繩在臂頭的拉力、風載、液壓缸作用力及伸縮機構鋼絲繩拉力。風載荷加到吊臂側面上,而其它力則須加到相應位置的節點上(或關鍵點上),為了使得這些加載點能成為節點,首先需要在此位置處創建硬點(Hardpoints),此外,由于鋼絲繩在臂頭的拉力及伸縮機構鋼絲繩拉力等方向與整體坐標系方向不一致,故還須旋轉這些節點坐標系,以便于加載。
約束處理:基本臂尾部與轉臺鉸接處,約束3個方向平移自由度(UX、UY、UZ)和兩個方向的轉動自由度(ROTY、ROTZ)。釋放繞銷軸中心回轉的轉動自由度(ROTX)。變幅液壓缸鉸點處同樣處理。
3計算結果與分析
通過對上述有限元模型進行計算,得到在工況下的最大變形量為:UX=0.542m,UY=-0.272m,UZ=-1.039m,均位于吊臂頭部。應力計算結果用Vonmises當量應力值表示。吊臂上應力值較大的區域為:下滑塊作用位置的折板處以及基本臂與變幅液壓缸鉸接處。最大應力發生在三節臂折板與左滑塊接觸處,其值達到551MPa,其上應力分布情況如圖4所示(注:折板位置見圖2)。圖中標出應力值較大點,它們靠近吊臂外側。其它滑塊處的應力分布情況也是這樣。
QY25K型伸縮吊臂已做過結構應力試驗,所加載荷有:吊重、側載和風載,由于風載作用在吊臂的側面,試驗中很難施加,故將其轉化到吊臂頭部來進行施加。試驗的測點均布置在滑塊附近,現將用有限元法在測點處的計算應力值與實測值進行比較,見表1。
4結束語
(1)用有限元法對伸縮吊臂結構進行強度、剛度分析,其結果應該比常規的解析法更準確、可靠,且可以獲得解析法難以分析的局部區域應力分布,如吊臂與滑塊接觸處、變幅液壓缸鉸接處,而這些區域往往又是危險部位。有限元分析的結果可為實際設計提供有價值的參考。
(2)本文運用節點自由度耦合技術模擬滑塊與吊臂的連接,并將計算結果與實測值進行對比,二者較為吻合。
下一篇:起重變頻器的應用概述
推薦文章:
-
06
2022-03
QY25K型汽車起重機伸縮吊臂的有限元分析
1伸縮吊臂的結構組成及分析方法 QY25K汽車 起重機 采用四節伸縮式箱形吊臂,如圖1所示。各節臂之間可以相對滑動,靠它們搭接的上下滑塊來傳遞作用力。基本臂1根部與轉臺通過水平...詳細